A Bayesian Approach to Heavy-Tailed Finite Mixture Autoregressive Models
نویسندگان
چکیده
منابع مشابه
Pitfalls of Fitting Autoregressive Models for Heavy{tailed Time Series
We consider the analysis of time series data, with particular emphasis on series which have a heavy-tailed structure | that is, whose marginal distributions have a right tail which is regularly varying at innnity with index ?. A natural model to attempt to t to time series data is an autoregression of order p, where p itself is often determined from the data. Recently several methods of paramet...
متن کاملAutoregressive Stochastic Volatility Models with Heavy-tailed Distributions: A Comparison with Multifactor Volatility Models
This paper examines two asymmetric stochastic volatility models used to describe the heavy tails and volatility dependencies found in most financial returns. The first is the autoregressive stochastic volatility model with Student’s t-distribution (ARSV-t), and the second is the multifactor stochastic volatility (MFSV) model. In order to estimate these models, the analysis employs the Monte Car...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولBayesian analysis for heavy-tailed nonlinear mixed effects models
Abstract: Nonlinear models have many applications in different areas such as pharmacokinetics and pharmacodynamics, and random effects are often included to take into account the correlation between observations taken within the same subject. In this context, we propose a bayesian analysis for heavy-tailed nonlinear mixed effects models, which may produce more robust estimates for the parameter...
متن کاملPrediction with Mixture Autoregressive Models
Mixture autoregressive (MAR) models have the attractive property that the shape of the conditional distribution of a forecast depends on the recent history of the process. In particular, it may have a varying number of modes over time. We show that the distributions of the multi-step predictors in MAR models are also mixtures and specify them analytically. In the important case when the origina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2020
ISSN: 2073-8994
DOI: 10.3390/sym12060929